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BUILD UPON THE TRADITION OF SERVICE!




Outline LDSTECH

* mapping approaches

e primary keys

* sequences/generators
e orphans

e equals and hashcode

* fetch types/n+1 queries
* eager vs. lazy loading

* concurrency

Build upon the tradition of service!
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Mapping Approaches

 Two approaches to mapping

— Schema driven design
e Build the object model based upon the database

— Object Oriented driven design

* Hibernate can generate database creation scripts from
your object model

Build upon the tradition of service!
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Mapping Approaches

e avoid automatic schema generation if you
— have an existing database

— have certain database naming standards or data
modeling best practices to conform to

— want total control over the schema
* also note that

— some claim the generated schema quality is sub-par

— additional mapping work is required to specify
objects names if you don’t like the defaults

Build upon the tradition of service!
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Primary Keys

* primary key: uniquely identifies a row in a table
e surrogate key: primary key that has no relation
to the data

— usually generated with a database sequence
(1,2,3,4,5,6...)

— or a GUID generator
(5C37A7C133968DAFE040610A299461FB)

Build upon the tradition of service!




Primary Keys

* on pure bridge tables you can use a composite
key consisting of the 2 foreign keys

* map with @ManyToMany

USER_ROLE

ROLE_ID ROLE_ID USER_ID
USER_ID

Build upon the tradition of service!
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Primary Keys

* use a surrogate key when attributes of the
relationship exist

 Map the bridge table explicitly and use
@OneToMany from each direction

USER_ROLE

ROLE_ID

ROLE_ID
= USER_ID

USER_ID

END_DATE
AUTHORIZED_BY

Build upon the tradition of service!
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Sequences LDSTECH

* map sequences with @SequenceGenerator

* bind the sequence to a column with
@GeneratedValue

@Id
@SequenceGenerator(name="UserSequence",
sequenceName="USER_PK" ,
allocationSize=1)
@GeneratedValue(strategy=GenerationType.SEQUENCE,
generator="UserSequence")
private Long 1id;

Build upon the tradition of service!
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Sequences

Don’t forget the allocation size

Build upon the tradition of service!




Sequences

e Sequence with classic generator
— default allocation size is 50
— query the database sequence (.nextval)

— multiply the database sequence value by the
allocation size

— use that value to insert the row
— increment by 1 internally until the block is exhausted

— then return to the database sequence

Build upon the tradition of service!
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Sequences LDSTECH

 example of classic generator using
— allocation size: 50 (default)
— database increment: 1 (default)

— create sequence example_seq [increment by 1];

Database Sequence Returns Hibernate Uses
1 50, 51, 52, 53...99
2 100, 101, 102... 149
3 150, 151, 152... 199

Build upon the tradition of service!
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Sequences

e Sequence with enhanced generator
— optional in v3.2.3+ (stack 3.2 uses this)
— default allocation size of 50
— query the database sequence (.nextval)

— subtract the allocation size from the database
sequence value and add 1

— use that value to insert the row
— increment by 1 internally until the block is exhausted

— then return to the database sequence

Build upon the tradition of service!
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Sequences LDSTECH

 example of enhanced generator using
— allocation size: 50 (default)
— database increment: 50, start with 50

— create sequence example_seq increment by 50;

Database Sequence Returns Hibernate Uses
50 1, 2,3...50
100 51,52, 53... 100
150 101, 102, 103... 150

Build upon the tradition of service!
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Sequences

* These behaviors (both classic and enhanced)
boost performance by avoiding trips to the
database

* This is good if...
— you need the performance boost
— holes in the id field are acceptable

— all entry points into the table use the same
algorithm... OTHERWISE...
ORA-00001 unique constraint violated

Build upon the tradition of service!
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Sequences

¢* use
— explicit allocation size of 1

— database sequences that increment by 1

* unless
— you need the performance boost

— all entry points use the same algorithm

https://tech.lds.org/wiki/Hibernate, JPA, and_ Sequences

Build upon the tradition of service!
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Orphans LDSTECH

e orphans occur when a parent record is missing
— Cause: the parent record is not in the database
— Why?
* missing or un-enforced foreign keys
* mapping views instead of base tables

e counter orphan tactics
— um, use foreign keys, hello? why aren’t you?

— avoid mapping views

* if you must, isolate them, don’t map their relationships

Build upon the tradition of service!
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Equals and Hashcode

 normally, most Java objects provide default
equals() and hashCode() methods based on the
object’s identity

* they work great for objects that stay in memory,
but hibernate marshals them in and out

* if you want to store entities in a List, Map or Set
implement equals AND hashCode on the entity

Build upon the tradition of service!




Equals and Hashcode

* the identifier doesn’t work because the key
doesn’t work until the object has been
persisted*

* implement equals and hashCode using the
business key works

e a workaround is to save and flush after creating
a hew object (performance? prone to forgetting)

http://www.hibernate.org/109.html

Build upon the tradition of service!




Fetch Types

 Eager vs. Lazy

 The default fetch type is often correct however..

* This is the first place you should look when
tuning performance

* \Watch your console for repeating queries

e 1
C

nat’s an N+1 - hibernate is returning to the
atabase for each record retrieved in a previous

C

uery

Build upon the tradition of service!
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Fetch Types

e fix N+1 problems

e they are hardly noticed when developing against
a local or near by database

* but the problem is amplified when latency
between the application server and the
database server is introduced - firewalls,
distance, etc.

Build upon the tradition of service!
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Fetch Types

 The opposite of N+1 is the “load up the world”
problem

* Hibernate is eager loading too many
relationships

» Stick with the default fetch type (Lazy) on

*ToMany relationships, only switch to Eager
when N+1’s are occuring

Build upon the tradition of service!




Concurrency

JPA supports both optimistic and pessimistic locking

Just an overview, see the docs for details

Build upon the tradition of service!
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Concurrency

e Pessimistic locking
— use with moderate or less contention
— must be inside a transaction

— prevents collision up front

— em.find(Example.class, exampleld,
LockModeType.PESSIMISTIC_WRITE)

— translates into a “SELECT FOR UPDATE"

Build upon the tradition of service!
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Concurrency

e Optimistic locking
— use with any level of contention
— must be inside of a transaction
— use @Version annotation on the version column
— JPA check the version before writing out changes

— throws OptimisticLockException if the row was
modified by another transaction since the last read

— write your application to either automatically
recover or allow the user to verify and re-try

Build upon the tradition of service!
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