[DSTECH JESUS 'l(‘}H'{é'i_.sir

OF LATTER-DAY SA

JPA Best Practices

Bruce Campbell

BUILD UPON THE TRADITION OF SERVICE!




Outline LDSTECH

* mapping approaches

e primary keys

* sequences/generators
e orphans

e equals and hashcode

* fetch types/n+1 queries
* eager vs. lazy loading

* concurrency

Build upon the tradition of service!

e Cuurcn or Jesus Curist or

LATTER-DAY SAINTS



Mapping Approaches

 Two approaches to mapping

— Schema driven design
e Build the object model based upon the database

— Object Oriented driven design

* Hibernate can generate database creation scripts from
your object model

Build upon the tradition of service!

Tue Cuuncn or Jesus Curist or LATTER-DAY SAINTS



Mapping Approaches

e avoid automatic schema generation if you
— have an existing database

— have certain database naming standards or data
modeling best practices to conform to

— want total control over the schema
* also note that

— some claim the generated schema quality is sub-par

— additional mapping work is required to specify
objects names if you don’t like the defaults

Build upon the tradition of service!

e Cuurcy or Jesvus Curist or LATTER-DAY SAINTS



Primary Keys

* primary key: uniquely identifies a row in a table
e surrogate key: primary key that has no relation
to the data

— usually generated with a database sequence
(1,2,3,4,5,6...)

— or a GUID generator
(5C37A7C133968DAFE040610A299461FB)

Build upon the tradition of service!




Primary Keys

* on pure bridge tables you can use a composite
key consisting of the 2 foreign keys

* map with @ManyToMany

USER_ROLE

ROLE_ID ROLE_ID USER_ID
USER_ID

Build upon the tradition of service!

Tue Cuuncn or Jesus Curist or LATTER-DAY SAINT



Primary Keys

* use a surrogate key when attributes of the
relationship exist

 Map the bridge table explicitly and use
@OneToMany from each direction

USER_ROLE

ROLE_ID

ROLE_ID
= USER_ID

USER_ID

END_DATE
AUTHORIZED_BY

Build upon the tradition of service!

Tue Cuuncn or Jesus Curist or LATTER-DAY SAINT



Sequences LDSTECH

* map sequences with @SequenceGenerator

* bind the sequence to a column with
@GeneratedValue

@Id
@SequenceGenerator(name="UserSequence",
sequenceName="USER_PK" ,
allocationSize=1)
@GeneratedValue(strategy=GenerationType.SEQUENCE,
generator="UserSequence")
private Long 1id;

Build upon the tradition of service!

Tue Cuurcn or Jesvs Curist or LATTER-DAY SAINT



Sequences

Don’t forget the allocation size

Build upon the tradition of service!




Sequences

e Sequence with classic generator
— default allocation size is 50
— query the database sequence (.nextval)

— multiply the database sequence value by the
allocation size

— use that value to insert the row
— increment by 1 internally until the block is exhausted

— then return to the database sequence

Build upon the tradition of service!

Tue Cuurcn or Jesvs Curist or LATTER-DAY SAINT



Sequences LDSTECH

 example of classic generator using
— allocation size: 50 (default)
— database increment: 1 (default)

— create sequence example_seq [increment by 1];

Database Sequence Returns Hibernate Uses
1 50, 51, 52, 53...99
2 100, 101, 102... 149
3 150, 151, 152... 199

Build upon the tradition of service!

vs Cuxist or LATTER-DAY SAINTS



Sequences

e Sequence with enhanced generator
— optional in v3.2.3+ (stack 3.2 uses this)
— default allocation size of 50
— query the database sequence (.nextval)

— subtract the allocation size from the database
sequence value and add 1

— use that value to insert the row
— increment by 1 internally until the block is exhausted

— then return to the database sequence

Build upon the tradition of service!

Tue Cuurcn or Jesvs Curist or LATTER-DAY SAINT



Sequences LDSTECH

 example of enhanced generator using
— allocation size: 50 (default)
— database increment: 50, start with 50

— create sequence example_seq increment by 50;

Database Sequence Returns Hibernate Uses
50 1, 2,3...50
100 51,52, 53... 100
150 101, 102, 103... 150

Build upon the tradition of service!

vs Cuxist or LATTER-DAY SAINTS



Sequences

* These behaviors (both classic and enhanced)
boost performance by avoiding trips to the
database

* This is good if...
— you need the performance boost
— holes in the id field are acceptable

— all entry points into the table use the same
algorithm... OTHERWISE...
ORA-00001 unique constraint violated

Build upon the tradition of service!

e Cuurcy or Jesvus Curist or LATTER-DAY SAINTS



Sequences

¢* use
— explicit allocation size of 1

— database sequences that increment by 1

* unless
— you need the performance boost

— all entry points use the same algorithm

https://tech.lds.org/wiki/Hibernate, JPA, and_ Sequences

Build upon the tradition of service!

Tue Cuuncn or Jesus Curist or LATTER-DAY SAINTS



Orphans LDSTECH

e orphans occur when a parent record is missing
— Cause: the parent record is not in the database
— Why?
* missing or un-enforced foreign keys
* mapping views instead of base tables

e counter orphan tactics
— um, use foreign keys, hello? why aren’t you?

— avoid mapping views

* if you must, isolate them, don’t map their relationships

Build upon the tradition of service!

Tue Cuurcn or Jesvs Curist or LATTER-DAY SAINT



Equals and Hashcode

 normally, most Java objects provide default
equals() and hashCode() methods based on the
object’s identity

* they work great for objects that stay in memory,
but hibernate marshals them in and out

* if you want to store entities in a List, Map or Set
implement equals AND hashCode on the entity

Build upon the tradition of service!




Equals and Hashcode

* the identifier doesn’t work because the key
doesn’t work until the object has been
persisted*

* implement equals and hashCode using the
business key works

e a workaround is to save and flush after creating
a hew object (performance? prone to forgetting)

http://www.hibernate.org/109.html

Build upon the tradition of service!




Fetch Types

 Eager vs. Lazy

 The default fetch type is often correct however..

* This is the first place you should look when
tuning performance

* \Watch your console for repeating queries

e 1
C

nat’s an N+1 - hibernate is returning to the
atabase for each record retrieved in a previous

C

uery

Build upon the tradition of service!

Tue Cuurcn or Jesvs Curist or LATTER-DAY SAINT



Fetch Types

e fix N+1 problems

e they are hardly noticed when developing against
a local or near by database

* but the problem is amplified when latency
between the application server and the
database server is introduced - firewalls,
distance, etc.

Build upon the tradition of service!

Tue Cuurcn or Jesvs Curist or LATTER-DAY SAINT



Fetch Types

 The opposite of N+1 is the “load up the world”
problem

* Hibernate is eager loading too many
relationships

» Stick with the default fetch type (Lazy) on

*ToMany relationships, only switch to Eager
when N+1’s are occuring

Build upon the tradition of service!




Concurrency

JPA supports both optimistic and pessimistic locking

Just an overview, see the docs for details

Build upon the tradition of service!

Tue Cuuncn or Jesus Curist or LATTER-DAY SAINTS



Concurrency

e Pessimistic locking
— use with moderate or less contention
— must be inside a transaction

— prevents collision up front

— em.find(Example.class, exampleld,
LockModeType.PESSIMISTIC_WRITE)

— translates into a “SELECT FOR UPDATE"

Build upon the tradition of service!

Tue Cuurcn or Jesvs Curist or LATTER-DAY SAINT



Concurrency

e Optimistic locking
— use with any level of contention
— must be inside of a transaction
— use @Version annotation on the version column
— JPA check the version before writing out changes

— throws OptimisticLockException if the row was
modified by another transaction since the last read

— write your application to either automatically
recover or allow the user to verify and re-try

Build upon the tradition of service!

Tue Cuurcn or Jesvs Curist or LATTER-DAY SAINT



